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Abstract

This article focuses on the application of artificial
evolution to the synthesis of analog active filters. The
main objective of this research is the achievement of a
new class of systems, with advantageous features
compared to conventional ones, such as lower power
consumption, higher speed and more robustness to
noise. The particular problem of designing the
amplifier of an AM receiver is examined in this work.
Genetic algorithms are employed as our evolutionary
tool and two sets of experiments are described. The
first set has been carried out using a single objective,
the desired frequency response of the circuit. In a
second set of experiments, three other objectives have
been included in the system. A new multi-objective
evaluation methodology was conceived for this second
set of experiments. A second approach for evolving
active filters, using programmable chips, is also
discussed in this paper.

1 Introduction

The evolutionary design of circuits based on
bipolar transistors is the main focus of this work.
Bipolar transistor technology is still important for high
speed applications in electronics. Particularly, our
work addresses some important issues of electronic
circuits evolution, such as the multiple-objective
nature of the task; the speed of the evolutionary tool to
produce a design from scratch; and the
implementability of the produced circuits.

The synthesis of an amplifier for AM band is
performed in this work. This circuit works as a band-
pass filter, amplifying incoming signals located in the
AM frequency band. Particularly, many practical radio
amplifiers are still implemented through bipolar
transistors technol ogy [ Sansen98g].

Departamento de Engenharia Elétrica
PUC-Rio — Brasil
e-mail:salem@ele.puc-rio.br

Due to the fact that analog design is more complex
for automation than its digital counterpart [Johns97],
the use of search techniques represents an interesting
aternative. Recently, the evolutionary approach
applied to analog design has been proposed by many
authors, and promising results have been achieved
[Koza98][Layzel198][ L ohn98][ Stoica98.

A Genetic Algorithm (GA)
[Goldberg89][Holland75] with integer representation
is employed as the evolutionary tool in these
experiments. We present results for both single and
multiple objectives tasks. In the former, the desired
frequency response of the amplifier is the only
objective taken into account; in the later, power
dissipation, symmetric excursion and noise are taken
into account as well.

Additionally, a comparison between the
performance of genetic algorithms and hillclimbing
[Blickle9gg] for this problem is provided. We aso
compare the application of extrinsic and intrinsic
methods [Zebulum98] for circuits evolution.

This work is organised in five additional sections.
Section 2 describes the behaviour of the circuit to be
synthesised. Section 3 presents the main features of our
genetic agorithm, including representation and fitness
evaluation function. Section 4 shows the results
obtained using this approach. Section 5 provides a
discussion on  results obtained using a programmable
analog chip during the circuits evaluation step.
Finally, section 6 concludes this work.

2 Problem Description

We analyse the particular problem of designing an
amplifier for a radio receiver tuned in the AM
frequency band. This active filter must amplify
incoming signals inside the frequency band ranging
from 0.15 to 1.6MHz [Sansen98], whilst attenuating
signals outside this frequency band. Figure 1 depicts a
schematic of the desired system:
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Figure 1 — Basic schematic of the AM receiver with inductive source.

In Figure 1, L, represents the antenna inductance, and
C, is a paraditic capacitance, assuming values of
3.5mH and 7pF respectively [Sansen98]. The input
signal, I;,, presents a magnitude of 1.5nA (around -
117dB) [Sansen98]. The combination of L, and C,
works as a trap to the incoming signal |;,. This trap has
a resonant frequency at 1MHz. S represents the
amplifier to be evolved, which must be tuned to the
AM frequency band defined above. Finaly, Ry is the
load output to be driven.

Conventional design of active filters uses
operational amplifiers as circuit building blocks. In
contrast, this work does not enforce this conventional
design principle, and low-level building blocks, such as
transistors, resistors and capacitors, are utilised.
Although this procedure increases the design
complexity, novel circuits are more likely to be
achieved. The discussion section of this article presents
an additional case study, where operational amplifiers
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and switched capacitors are used as building blocks for
the evolutionary system.

3 Evolutionary Algorithm

A three operator evolutionary algorithm, including
selection, crossover and mutation operations, is
employed. The application of an evolutionary
algorithm to this problem encompasses the choice of
an efficient representation and fitness evaluation
function. Both are now described.

3.1 Representation

An integer representation based on a linear string
has been employed. This representation has been used
previously by the authors in the synthesis of
operational amplifiers [Zebulum98]. Figure 2 depicts
an example of this kind of genotype-phenotype
mapping for acommon emitter amplifier.

Gene = [Connecting points, Component value,Component nature]

Component nature:
0 = transistor

1 = resistor

2 = capacitor

External points: 0,1,3,4.
Internal point: 2

Figure 2 — Analog Circuit Representation



The genotypes are made up of genes, each of
which encodes a particular component. The gene
determines the nature, value and connecting points of
the related component. First introduced in
[Gribleby95] for the evolution of passive filters
topologies, this representation is here extended to
include the assignment of component values as well.

The total number of connecting points is a
parameter to be set in this representation. This
parameter is critical to the efficiency of the
representation: if too few connecting points are
considered, the number of possible topologies
sampled by the evolutionary agorithm will be
limited; conversely, if too many connecting points
are considered, a higher number of unsimulatable
topologies (with floating components) will arise.
Additionally, each connecting point may be classified
as internal or external. While the former does not
serve for any special purpose, the latter is connected
to one of the following signals: power supply,
ground, input signal or probed output (Figure 2).

Due to the fact that a linear string is being used,
we will refer to this evolutionary system as a genetic
algorithm [Goldberg89] throughout this paper.

3.2 Evaluation

So far, most works concerning the evolution of
analog circuits have used only one goal to be
achieved by the evolved circuit. Nonetheless, the
main challenge of applying genetic algorithms or any
other search technique to analog design is the multi-
objective nature of this task [Zebulum99]. Multi-
objective optimisation concerns the need to integrate
vectoria performance measures with the inherently
scalar way in which most optimisation techniques
reward performance. Because genetic algorithms
require scalar fitness information on which to work, a
scalarization of the objective vectors is aways
necessary [Fonsecads].

After testing some standard methods for multiple-
objective optimisation, the authors devised a new one
that is tailored for this class of problems. Asit will be
observed, our method is based on artificial neural
networks learning algorithms [ Churchland92].

Given a population of individuals, each one
encoding an analog circuit in the way shown
previously, a measure of performance or fitness is
assigned to each individual in the following way:

Fitness= g wFnorm )

i=1

According to the above equation, the fitness is
computed by a weighted sum, where w is a weight

vector; n isthe number of objectives; and Fo, is the
normalised fitness vector. This vector is defined by:

I:I
Fnorm, 3 (2)

F; is the individual’s score with respect to a
particular objective i, whereas the denominator of the
above expression represents the average fitness, over
all the individuals of the population, with respect to
the same objective. This normalisation is
accomplished to account for the fact that the
objectives are measured in different units (decibels,
Hertz, etc), and al of them must have the same
influence in the fitness expression.

The main problem of this approach is the one of
setting the weights' values. It is desirable to use a
strategy in which the weights are dynamically
updated according to the level of satisfaction of each
objective; and aso to take into account the user's
specifications (design plan) for each particular
objective.

Based on these guidelines, the following weight
updating equation has been adopted:

Wi =@ XW,  + (1-a) X€; (3)

The above equation uses an additional temporal index
t, which points to a particular generation of
individuals. Hence, wi.; is the next value of the
weight associated to objectivei. Itiscomputed using
its present value, w;, , and an error measure, g;. This
equation is based on the Backpropagation learning
algorithm for Artificial Neural Networks (ANN)
[Churchland92]. The term a used in equation 3 can
take real values from O to 1, and will balance the
contribution of the error and of the current weight
value in the updating equation. Through much
experimentation, we found that a value of a=0.8
(Equation 3) produced best results. This term is
analogous to the momentum term used in the
backpropagation algorithm, which is related to the
stability of the learning process. The error g,
provides a measure of the overal system
performance for the particular objective i, and it is
computed by:

_|F_i,t'US€ri|
User

(4)

it

Where User; represents the user specification for
objective i. Therefore, the error is calculated by the



difference between the average value for objective i
over al individuals, and the user specification. The
weights values will then reflect the state of the
system at the particular instant t.

All the weights are initidlised with an equal
arbitrary absolute value: if the corresponding
objective needs to be minimised, the weight must
take a negative initial value, and a positive value if
the corresponding objective needs to be maximised.

Concerning the actua implementation of
measurements in the circuits sampled by the GAs,
there are two standards modes in which this
procedure can be carried out, intrinsic and extrinsic
assessments [Zebulum98]. In the former, each
individual of the evolutionary algorithm is
downloaded into a  programmable  chip
[Stoica98][Thompson98], whereas, in the latter,
simulators accomplish the performance
measurements. This work concentrates on extrinsic
evolution, providing, though, a discussion on results
achieved in intrinsic evolutionary experiments.

4 Results

We present the results of two classes of
experiments, processing a single objective and
multiple objectives respectively.

4.1 Single Objective Experiments

This first class of experiments took only the
desired frequency response into account. The fitness
is given by the following equation:

n

. o . .

Fitness= a. W >(Vout(l) - \/ln(l)) (5)

i=1

Where V,; is the circuit output and Vi, is the
incoming signal at the input of the circuit S, shown in
Figure 1. As these voltages are measured in decibels,
(Mou(i) — Vin(i)) is the amplifier gain at a particular
frequency i. n is the total number of output samples.
The weights w; take positive values for frequency
points inside the AM band, and negative vaues
outside this band. These weights are not related to the
ones presented in section 3.2, since we are tackling a
single objective optimisation here. The weights
values have been set through experimentation,
assuming a value of +33 for freguency points
between 150 kHz and 2 MHz (passing band); -4 for
frequency points above 2 MHz; and -1 for frequency
points below 150 kHz.

A chromosome made up of 12 genes has been
employed in this set of experiments. The
components' nature are chosen from four options:
npn transistor; pnp transistor; resistor; and capacitor.
Eight connecting points are available for the topology
arrangement, four of them being external ones (input,

output, power supply and ground). A power supply of
3V, which istypical of radio batteries, has been used.
The evolutionary algorithm can choose among eight
different values for resistors and capacitors
respectively. The resistor values range from 75W to
500kW and the capacitor values range from 0.1nF to
100nf. The authors strategy was to let a small
number of different component values available to
the GA, and keep the design space in a manageable
size. As a consequence, an interactive involvement
with an expert may be necessary to further improve
the evolved circuits.

The size of the search space can be calculated
from the above values. There are a around 4 x 8
different genes in this representation’. As each
chromosome is constituted by 12 genes, one can
conclude that the size of the search space is given by
(4 x 8% possible solutions, which is around 10%.

In order to sample this search space, we ran 10
executions of the GA, each one including 40
individuals and 100 generations. Each execution
lasts around 30 minutes in a Sun Ultra Enterprise 2
server with one 300 MHz ultra sparc processor. The
small signal analysis of the SPICE simulator has been
used in this set of the experiments. It has been
verified that most executions produced circuits that
conformed well to the specification. Figure 3 depicts
the schematic of one circuit achieved in this set of
experiments; Figure 4 shows its frequency response.
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Figure 3 — Schematic of an amplifier obtained in the
first set of experiments.

From Figure 3, it can be seen that the evolved
solution uses only 6 components (not considering L,
Ca and R, 4); the other 6 components encoded in the
chromosome were not effectively contributing to the

! Number of genes = (# different components) . (#
conntsacti ng points)? (# different component values) =
4x8
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circuit’'s behaviour. The most interesting aspect of
this circuit is its parsimony, which stems from the
fact that only one objective had to be fulfilled by the
GA. It is aso interesting to note that this amplifier is
configured in a  conventional common-emitter
topology. The circuit connected in its collector, R2,
R3 and C2, works as a low-pass filter, with cut-off
frequency around 5 MHz; the capacitor C1 attenuates
low frequency signals. The resistor R1 sets the DC
operating point of the amplifier. Even though
temperature variations were not taken into account in
the fitness evauation function, this biasing
configuration is advantageous to compensate effects
of temperature changes [Laker94].
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Figure 4 — Frequency response of the amplifier
shown in Figure 3.

The graph of Figure 4 shows the amplifier's gain
in the frequency domain. Focusing on the AM
frequency band, the minimum gain achieved by the
circuit is 28 dB, at 1.5MHz; and the maximum gain is
34dB, at 400kHz. Conventiona circuits present an
average minimum gain of 16dB; and an average
maximum gain of 37dB [Sansen98].

Further  design  improvements can be
accomplished by optimising the resistors and
capacitors values. For instance, a simple inspection of
the evolved circuit shows that reducing the value of
Cl is a way to enhance the transfer function, by
shifting the lower half of the circuit passing band
from 20kHz to 50 kHz.

Finally, we performed a comparison between the
performance of our GA and the hillclimbing search
technique [Blickle96]. A total of 20 GA executions
were performed, each one processing 40 individuals
along 100 generations. The same number of
individuals has been processed in the hillclimbing
method, i.e., 20 executions processing one individual
along 4000 generations. We note that the GA was
optimised in terms of mutation rate (around 1
mutation per genotype) and of selection pressure

(exponentia selection with parameter ¢ equa to 0.9
[Blickle9g]). The graph of Figure 5 shows the
average fithess obtained in both experiments.
Although the GA outperformed hillclimbing, the
latter performed surprisingly well for this problem.
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Figure 5 — Average fitness along the generations for
two experiments. GA (full line) and Hillclimbing
(traces). In the case of hillclimbing, the fitness values
were taken within an interval of 40 generations, in
order to match the number of 100 fitness points.

4.2 Multi-Objectives Experiments

Although hillclimbing and GAs  produced
comparable performances in the single-objective
experiments, the genetic algorithm is better tailored
for the multiple-objective application. This is due to
the fact that, as it is described in section 3.2, our
multi-objective fitness evaluation method requires the
computation of an average over a set of individuals
(equation (4)). Since hillclimbing focuses on only
one individual at a time, it can not be applied in the
context of this technique.

Four objectives have been considered: the
frequency response fitness, computed in the way
shown in equation (5); the minimisation of the power
dissipation; the maximisation of the Maximal
Symmetric Excursion (MSE); and the minimisation
of the integrated output noise. The power dissipation
and the integrated output noise are directly measured
by the simulator; the MSE is maximised by keeping
the DC value of the output voltage, Vq(out), at half
of the power supply value (1.5V); this is
accomplished by minimising the quantity |Vq(out) —
15|.

These four objectives are aggregated in the way
shown in equation (1), and the weights are updated
through the expression presented in equation (3). The
design plan (user's specifications) used in this
experiment was set to: fithess of the freguency
response (equation (5)) equal to 10000; power
consumption equa to 0.1 mW; value of |V (out) —
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1.5| equal to 0.5V, corresponding to a 1.0V excursion
in the output; and integrated output noise equal to —
120dB. We ran 10 GA’s executions, each one
including 40 individuals and 100 generations. The
overall experiment lasted around 4 hours in one 300
MHz ultra sparc processor. The SMASH
[SMASH93] simulator was used in this set of the
experiments. The graphs of Figure 6 display the
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average vaues taken by the four objectives during
this experiment. It can be seen that the GA tries to
optimise the frequency response, MSE, and
dissipation, keeping control of the output noise
simultaneousdly.

Figure 7 shows the schematic of the best circuit

achieved in this second set of experiments.
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O Out

(Alin —

— Ca ||

Rload=10k

C7=1n

La

C10=50n® 1n

RO=10k

3V

Figure 7 — Best amplifier achieved in the second set of experiments.

In the above circuit, transistors Q11 and Q2 work
in the linear region and transistor Q1 works in the
reverse region. Q2 is peforming the signa
amplification and delivering it to the pair Q1 and
Q11, which is setting the DC output to the desired
value. As shown in the schematic, this design can be
improved by a simple ingpection: the value of Cy
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may be decreased from 50nF to 1nF; and the input
impedance of the amplifier may be increased by
inserting R,,. These changes improve the passing
band boundaries within the AM frequency region, by
shifting it to the right. The graphs of Figure 8 show
the frequency response of the circuit, with and
without these changes.
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Figure 8 — Gain of the circuit shown in Figure 7: without changes (A); improved design (B).



We can draw a comparison between the
performance of the circuit obtained in the first set of
experiments and the improved version of the circuit
shown in Figure 7. Both of them display a gain close
to 30dB at the frequency of 500kHz. The design of
Figure 7 presents an integrated noise in the output of
-94 dB, against -83dB observed in the circuit of
Figure 3. A reference value for noise in bipolar
amplifiers can be taken from [Johns97], where the
output noise for a common emitter amplifier, with
DC operating point optimised for noise attenuation,
assumed a value around —80dB at 300K (the same
temperature used in our experiment). The power
consumption of the above circuit is 5.0 mW, against
3.9mW of the circuit depicted in Figure 3. This
difference is due to the fact that the amplifying
transistor of the above circuit, Q2, is draining more
current from the power supply than the single
transistor of the first circuit. Finaly, the MSE of the
circuit in Figure 7 isaround 1.5V (DC output value is
1.5V), against 0.9V for the circuit shown in Figure 3.
Therefore, we can conclude that the second circuit is
better in terms of output excursion and noise.

An important issue concerning circuits evolution
through simulation is their implementability. It has
been verified, in a previous work [Zebulum98], that
simulators might bias transistors in overvoltage and
overcurrent conditions, which could not be
reproduced in practice. The minimisation of the
circuit dissipation along the evolutionary process,
accomplished in this experiment, was the means
whereby these conditions could be avoided.

5 Discussion

We present, in this final section, related results
achieved through intrinsic evolution. We have used
the field programmable analog array MPAAOQ20,
from Motorola[Motorolad7]. This chip’s architecture
consists of an array of operationa amplifiers,
connected through switched capacitors. The GA
controls the circuit connectivity, capacitors values

and other programmable features encoded in a linear
bitstring. Further details can be found in
[Zebulum98].

In a particular experiment, we focused on the
evolution of a biquad low-pass filter [Johns96], with
cutoff frequency close to 10kHz. The GA was
allowed to manipulate a chip’s region including two
operational amplifiers, which is the standard size of
conventional biquad filters [Motorolad7]. The fitness
evaluation function was computed by comparing the
transient response of the sampled circuits with the
one of a target filter. This transient response was
taken by applying a 10 kHz square wave to the
circuit’s input. The graphs of Figure 9 compare the
time and frequency domain responses, respectively,
of the evolved circuit and the target filter. This
experiment processed an order of 10° individuals
over many GA executions.

The transient analysis is more attractive than the
frequency analysis for intrinsic evolution, because the
evaluation step is less time consuming, not requiring
the computation of the Fast Fourier Transform (FFT).
Another approach to simplify the fitness evaluation
function is to consider only frequency points inside
the passing band. We ran another experiment
focusing only on the circuit's gain at a particular
frequency. A sine wave with amplitude equal to 1Vp-
p and 2kHz frequency was applied to the circuit’'s
input. The fitness evaluation function used as target
output signal a 2Vp-p and 2kHz sine wave. The GA
manipulated the connections of only one operational
amplifier. The frequency response of the obtained
circuit is plotted in Figure 10. It can be seen that the
circuit behaves as a band pass filter, with maximum
gain of 2.2, at the frequency of 2kHz. In this case, the
amplifier gain is limited by feedback connections.
Even though the fitness evaluation function does not
enforce particular values of cutoff freguencies, we
observed that most of the evolved solutions were
narrow band amplifiers.
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Figure 9 — Intrinsic evolution - Comparison between the evolved circuit (line) and target filter (points) response:
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Figure 10 - Gain of the amplifier obtained in the experiment using the programmable analog chip.

Each GA execution of the experiments reported
above lasted around 4 hours. Most of the execution
time is dominated by the chip downloading time. The
genotypes are around 500 bits long, resulting in a
very large genome space (~10™), compared to the
extrinsic experiments. One of the most important
aspects in intrinsic evolution is the fact that the
evolved circuits will aways work in redity.
However, the use of simulators, in the context of
extrinsic evolution, provides a more straightforward
way to accomplish multiple performance measures,
such as frequency response, dissipation and output
noise.

6 Conclusions

This work investigated the application of genetic
algorithms to the synthesis of an active filter for AM
band. A new method to aggregate multiple
specifications into the fitness function was
introduced. Four objectives have been addressed in

our experiments: frequency response; power
consumption; symmetric excursion; and output noise.
The search space sampled in these experiments has
been limited, by restricting the number of possible
component values. Conversely, we have followed a
particular strategy for design improvement,
consisting of inspection and small changes in the
evolved circuit. The authors are currently studying
problems of impedance coupling between the trap (L,
and C,) and the evolved amplifier, by including this
as another objective of the evolutionary process. The
results are encouraging when compared to
conventional circuits [Sansen98].

In another set of experiments, a programmable
analog chip was applied to the intrinsic evolution of
filters. The authors have been investigating different
approaches for fitness evaluation; currently, the use
of the FFT is being studied.
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